

© XenomatiX 2025 1

Xavia Interfacing

Web interface
The web interface is available at all times by

browsing to Xavia’s IP address. No separate

installation is required. In the web interface,

key information of the sensor is displayed

on the front page. Download links for the

user manual and SDK archives are provided.

All downloads are from the Xavia itself and

no internet connection is required to access

these files.

Xavia offers two ways to interact with its data:

1. A web interface that includes a live point cloud viewer.
2. An SDK to support integration in applications and solutions.

Together these two ways cover all use cases:

• The on-board point cloud viewer works anywhere, all the time, on all major browsers. No
need for installation, no compatibility issues.

• Visualizing what the sensor sees helps with installation and setting up the LiDAR to your
application needs.

• The real-time, optimized SDK allows you to feed the point cloud data into your
applications for further processing. Use the data to monitor your area, activate your
processes, count occurrences, or any other action that suits your application.

• Easy to use and filled with examples and boilerplate code, the SDK will reduce integration
time of Xavia to only a few hours.

XenomatiX focusses on the sensor, so you can focus on the solution.

© XenomatiX 2025 2

The point cloud viewer in the web interface provides a 2D or 3D view of the point

cloud. Color coding of the points can be selected to match the preferred view. The

viewport can be manipulated to visualize the point cloud from different angles.

Through this responsive viewer, you can easily install and setup the LiDAR according

to the needs of your application.

SDK
Downloadable directly from Xavia, the SDK provides a C++ library for easy

integration of the sensor into your solutions. This allows integrators to build turn-key

solutions using Xavia or fusing Xavia with other sensors and devices.

The SDK is a modern C++17, object-oriented framework that simplifies the

interaction with Xavia to 3 operations:

1. Configure how you will use the SDK

2. Connect to Xavia

3. Start streaming

This modern approach fully supports high quality code development using

automated (unit) testing, modularity and SOLID principles.

The following code fragment demonstrates both the brevity and the self-

explanatory, easy to read language the SDK provides. The result is that integration

will not take weeks, but a matter of hours.

© XenomatiX 2025 3

Through callbacks the point cloud information is continuously streamed to your

application and the 3D reconstructed coordinates (X, Y, Z) of each measured point

are available in real time. On top of this information, the SDK provides the radial

distance to the sensor, the reflectivity (in %), a confidence level and the amount of

ambient light for each point. Each data point is uniquely identifiable using

timestamps, frame counters offering flexibility of use. At the same time the data is

vectorized to provide the necessary optimization opportunities for real-time

applications.

With support for Linux and Windows x64, the SDK can be used on any desktop or

laptop. The support for Linux ARM64 provides the opportunity to use the SDK on edge

computing devices like the Nvidia Jetson, NXP i.MX and TI, which are ideal for

integrations with a small form factor.

int main()

{

 // CONFIGURATION

 xavia::sdk::SensorFactory factory;

 factory.SetPointCloudCallback(OnNewPointCloud);

 // CONNECT TO SENSOR

 auto sensor = factory.Build();

 // RUN IT

 sensor->Start();

 std::this_thread::sleep_for(std::chrono::seconds(10));

 sensor->Stop();

 return EXIT_SUCCESS;

}

void OnNewPointCloud(std::unique_ptr<xavia::sdk::IPointCloud> pc)

{

 std::string info = "New point cloud line received: "

 + pc->GetMetaData().frameNumber

 + ". First point: ("

 + pc->GetXMm()[0] + ", " pc->GetYMm()[0] + ", " pc->GetZMm()[0] + ")";

 std::cout << info << std::endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

